Pentafluorosulphur Iminosulphur Difluoride

By B. Cohen, T. R. Hooper, and R. D. Peacock

(Department of Chemistry, The University, Birmingham 15, England)

The action of fluorine gas on tetrasulphur tetranitride, S_4N_4 , has been reported¹ to yield sulphur fluorides and nitrogen. We have investigated this reaction, and find that by passing fluorine (0.5 g./hr.), diluted with nitrogen, over S_4N_4 at 0° c a mixture of gases and liquids is formed. In addition to the known sulphur fluorides SF_6 and SF_4 , nitrogen fluorides NF_3 and N_2F_2 , and thiazyl fluoride NSF, the new compound pentafluorosulphur iminosulphur difluoride, $SF_5-N=SF_2$, has been isolated.

At room temperature SF₅NSF₂ is a colourless liquid with approximately 20 cm. vapour pressure. The compound has been characterized by means of its molecular weight, chemical analysis, mass spectrum, and infrared spectrum. The major infrared absorption frequencies are at 600, 715, 760, 880, 910, and 1320 cm.-1 The ¹⁹F nuclear magnetic resonance spectrum of a solution of SF₅NSF₂ in carbon tetrachloride, which is completely consistent with the proposed structure, has been treated as an AB_4X_2 system in the following preliminary analysis by Dr. E. F. Mooney. The apical fluorine (A) of the SF₅ group gives rise to the normal nine-line spectrum associated with the AB₄ spectra of SF₅ derivatives.² The signal of the basal fluorines (B) consists of thirty-six lines, as each component of the normal twelve-line B4 spectrum is split into a triplet due to coupling with the fluorines of the -N=SF₂ group. The signal arising from the last fluorines (X) is a quintet. Treating the B_4 part of the spectrum by first-order analysis it has been possible to determine approximately the positions of the twelve lines of the B_4 spectrum, then, by using a treatment previously described² for analysis of AB_4 spectra of SF_5 derivatives, the following parameters are obtained.

The chemical shifts are in parts per million from CCl₃F as external standard.

The hydrolysis of SF_5NSF_2 by water or 10% potassium hydroxide solution yields thiazyl trifluoride, NSF_3 , but the successive intermediate formation of SF_5NSO and SF_5NH_2 is believed to take place in the scheme:—

$$\begin{array}{lll} \text{SF}_5\text{-N} = & \text{SF} + \text{H}_2\text{O} & \rightarrow & \text{SF}_5\text{-N} = & \text{S} = \text{O} + 2\text{HF} \\ \text{SF}_5\text{NSO} + \text{H}_2\text{O} & \rightarrow & \text{SF}_5\text{NH}_2 + & \text{SO}_2 \\ \text{SF}_5\text{NH}_2 & \rightarrow & \text{NSF}_3 + 2\text{HF} \end{array}$$

Sulphur dioxide has been identified through side oxidation to SO₄²⁻, and infrared evidence for the formation of SF₃NSO has been obtained.

Dr. A. F. Clifford³ has independently synthesized SF₅NSF₂ from the reaction of NSF₃ with SF₄.

(Received, October 11th, 1965; Com. 638.)

¹ O. Glemser, Angew. Chem. Internat. Edn., 1963, 2, 530.

² C. I. Merrill, S. M. Williamson, G. H. Cady, and D. F. Eggers, Jr., Inorg. Chem., 1962, 1, 215.

³ A. F. Clifford, private communication, 1965.